This paper proposes a new algorithm -- the \underline{S}ingle-timescale Do\underline{u}ble-momentum \underline{St}ochastic \underline{A}pprox\underline{i}matio\underline{n} (SUSTAIN) -- for tackling stochastic unconstrained bilevel optimization problems. We focus on bilevel problems where the lower level subproblem is strongly-convex and the upper level objective function is smooth. Unlike prior works which rely on \emph{two-timescale} or \emph{double loop} techniques, we design a stochastic momentum-assisted gradient estimator for both the upper and lower level updates. The latter allows us to control the error in the stochastic gradient updates due to inaccurate solution to both subproblems. If the upper objective function is smooth but possibly non-convex, we show that {\aname}~requires $\mathcal{O}(\epsilon^{-3/2})$ iterations (each using ${\cal O}(1)$ samples) to find an $\epsilon$-stationary solution. The $\epsilon$-stationary solution is defined as the point whose squared norm of the gradient of the outer function is less than or equal to $\epsilon$. The total number of stochastic gradient samples required for the upper and lower level objective functions matches the best-known complexity for single-level stochastic gradient algorithms. We also analyze the case when the upper level objective function is strongly-convex.


翻译:本文建议一种新的算法 -- -- 下层子问题强固且上层目标功能平滑的双层问题。 与以前依赖\ emph{ 2- 时间尺度} 或\ emph{ 双圈} 技术的工作不同, 我们为上层和下层更新设计了一种振动助动梯度梯度梯度估测器。 后一种方法允许我们控制由于子问题溶解不准确而导致的振动性双层优化更新中的错误。 如果上层子问题功能平滑但可能非convex, 我们显示, 与以前依赖\ emph{ 2- 时间尺度} 或\ emph{ 双圈} 技术的工作不同, 我们为高级和下层更新设计了一个振动助助梯度梯度梯度梯度梯度梯度梯度梯度估测算器。 以美元比 美元标准值总正值越低。

0
下载
关闭预览

相关内容

我们给定x,函数都会输出一个f(X),这个输出的f(X)与真实值Y可能是相同的,也可能是不同的,为了表示拟合的好坏,就用一个函数来度量拟合的程度。这个函数就称为损失函数(loss function),或者叫代价函数(cost function)
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员