This paper presents a problem in power networks that creates an exciting and yet challenging real-world scenario for application of multi-agent reinforcement learning (MARL). The emerging trend of decarbonisation is placing excessive stress on power distribution networks. Active voltage control is seen as a promising solution to relieve power congestion and improve voltage quality without extra hardware investment, taking advantage of the controllable apparatuses in the network, such as roof-top photovoltaics (PVs) and static var compensators (SVCs). These controllable apparatuses appear in a vast number and are distributed in a wide geographic area, making MARL a natural candidate. This paper formulates the active voltage control problem in the framework of Dec-POMDP and establishes an open-source environment. It aims to bridge the gap between the power community and the MARL community and be a drive force towards real-world applications of MARL algorithms. Finally, we analyse the special characteristics of the active voltage control problems that cause challenges (e.g. interpretability) for state-of-the-art MARL approaches, and summarise the potential directions.
翻译:本文提出了电力网络中的一个问题,为应用多剂加固学习(MARL)创造了一个令人振奋而又具有挑战性的现实情景。正在形成的脱碳趋势给电力分配网络造成过度压力。主动电压控制被视为一个很有希望的解决办法,可以缓解电力拥堵,提高电压质量,而无需额外的硬件投资,利用网络中可控装置,如顶楼光伏伏和静态伏变补偿器(SVCs)。这些可控装置在众多地区出现,分布在广泛的地理区域,使MARL成为自然候选设备。本文在Dec-POMDP框架内提出了积极的电压控制问题,并建立了一个开放源环境。其目的是弥合电力界与MARL社区之间的差距,并成为将MARL算法应用于现实世界的动力。最后,我们分析了动态电压控制问题的特殊性特征,这些问题给MARL方法带来挑战(例如可解释性),并对潜在方向进行总结。