Updating a linear least squares solution can be critical for near real-time signalprocessing applications. The Greville algorithm proposes a simple formula for updating the pseudoinverse of a matrix A $\in$ R nxm with rank r. In this paper, we explicitly derive a similar formula by maintaining a general rank factorization, which we call rank-Greville. Based on this formula, we implemented a recursive least squares algorithm exploiting the rank-deficiency of A, achieving the update of the minimum-norm least-squares solution in O(mr) operations and, therefore, solving the linear least-squares problem from scratch in O(nmr) operations. We empirically confirmed that this algorithm displays a better asymptotic time complexity than LAPACK solvers for rank-deficient matrices. The numerical stability of rank-Greville was found to be comparable to Cholesky-based solvers. Nonetheless, our implementation supports exact numerical representations of rationals, due to its remarkable algebraic simplicity.
翻译:更新线性最小方程式对于近实时信号处理应用程序来说至关重要。 Greville 算法建议了一个简单的公式,用于更新矩阵 A$\ in$ Rnxm 的伪反射值。 在本文中,我们通过保持一个普通等级乘数来明确得出一个类似的公式,我们称之为级格格。根据这个公式,我们实施了一个循环性最小方程式算法,利用A级差,在O( mr) 操作中更新最低中最温度最低方程式的解算法,从而解决O( nr) 操作中从零到零的线性最小方格问题。我们从经验上确认,这一算法比级差矩阵的LAPACK解算法复杂得多。据发现,等级- Greville 的数字稳定性与Choolesky 解算法相近。然而,我们的实施支持精确的理性数字表达方式,因为其显著的等距简单。