We introduce a new dataset for the emotional artificial intelligence research: identity-free video dataset for Micro-Gesture Understanding and Emotion analysis (iMiGUE). Different from existing public datasets, iMiGUE focuses on nonverbal body gestures without using any identity information, while the predominant researches of emotion analysis concern sensitive biometric data, like face and speech. Most importantly, iMiGUE focuses on micro-gestures, i.e., unintentional behaviors driven by inner feelings, which are different from ordinary scope of gestures from other gesture datasets which are mostly intentionally performed for illustrative purposes. Furthermore, iMiGUE is designed to evaluate the ability of models to analyze the emotional states by integrating information of recognized micro-gesture, rather than just recognizing prototypes in the sequences separately (or isolatedly). This is because the real need for emotion AI is to understand the emotional states behind gestures in a holistic way. Moreover, to counter for the challenge of imbalanced sample distribution of this dataset, an unsupervised learning method is proposed to capture latent representations from the micro-gesture sequences themselves. We systematically investigate representative methods on this dataset, and comprehensive experimental results reveal several interesting insights from the iMiGUE, e.g., micro-gesture-based analysis can promote emotion understanding. We confirm that the new iMiGUE dataset could advance studies of micro-gesture and emotion AI.


翻译:我们引入了情感人工智能研究的新数据集:为微化理解和情感分析(iMIGUE)引入了没有身份的视频数据集。与现有的公共数据集不同,iMIGUE侧重于非语言的身体动作,而没有使用任何身份信息,而情感分析的主要研究则涉及敏感的生物鉴别数据,比如脸和言语。最重要的是,iMIGUE侧重于由情感驱动的微动,即由内心情感驱动的无意行为,这不同于一般的手势动作范围,而其他手势数据集大多是故意为说明目的进行的。此外,iMIGUE旨在评估模型分析情绪状态的能力,办法是整合公认的微进化图像信息,而不是仅仅单独(或孤立地)地识别序列中的原型。这是因为对情感分析的真正需要是以整体的方式理解手势背后的情感状态。此外,为了应对该数据集样本分布不平衡的挑战,我们提出了一种未超超超的学习方法,以便从若干基于微化图像的预视像序列中获取潜在表现的能力。我们系统地调查了这种数据分析结果。

0
下载
关闭预览

相关内容

最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
【KDD2020教程】多模态网络表示学习
专知会员服务
129+阅读 · 2020年8月26日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
5+阅读 · 2018年1月23日
VIP会员
相关VIP内容
相关资讯
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员