Machine learning models are shown to face a severe threat from Model Extraction Attacks, where a well-trained private model owned by a service provider can be stolen by an attacker pretending as a client. Unfortunately, prior works focus on the models trained over the Euclidean space, e.g., images and texts, while how to extract a GNN model that contains a graph structure and node features is yet to be explored. In this paper, for the first time, we comprehensively investigate and develop model extraction attacks against GNN models. We first systematically formalise the threat modelling in the context of GNN model extraction and classify the adversarial threats into seven categories by considering different background knowledge of the attacker, e.g., attributes and/or neighbour connections of the nodes obtained by the attacker. Then we present detailed methods which utilise the accessible knowledge in each threat to implement the attacks. By evaluating over three real-world datasets, our attacks are shown to extract duplicated models effectively, i.e., 84% - 89% of the inputs in the target domain have the same output predictions as the victim model.


翻译:机器学习模型被展示为面临来自模型抽取攻击的严重威胁, 由服务提供商拥有的训练有素的私人模型可以被一个假装客户的攻击者偷走。 不幸的是, 先前的工程侧重于在Euclidean空间培训的模型, 例如图像和文本, 而如何提取含有图形结构和节点特征的GNN模型, 尚待探索。 在本文中, 我们首次全面调查和开发了针对GNN模型的模型抽取攻击模型。 我们首先系统地正式确定GNN模型中的威胁模型, 并将对抗性威胁分为七类, 考虑对攻击者的不同背景知识, 例如攻击者获得的节点的属性和(或)邻居连接。 然后我们提出详细的方法, 利用每个威胁中的可获取知识来实施攻击。 通过对三个真实世界数据集进行评估, 我们的攻击可以有效地提取重复的模型, 也就是说, 84% - 89% 的目标领域投入有与受害者模型相同的产出预测。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
33+阅读 · 2020年12月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
别说还不懂依存句法分析
人工智能头条
23+阅读 · 2019年4月8日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
别说还不懂依存句法分析
人工智能头条
23+阅读 · 2019年4月8日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员