Given a weighted bipartite graph with $n$ vertices and $m$ edges, the \emph{maximum weight bipartite matching} problem is to find a set of vertex-disjoint edges with the maximum weight. This classic problem has been extensively studied for over a century. In this paper, we present a new streaming algorithm for the maximum weight bipartite matching problem that uses $\widetilde{O}(n)$ space and $\widetilde{O}(\sqrt{m})$ passes, which breaks the $n$-pass barrier. All the previous streaming algorithms either require $\Omega(n \log n)$ passes or only find an approximate solution. Our streaming algorithm constructs a subgraph with $n$ edges of the input graph in $\widetilde{O}(\sqrt{m})$ passes, such that the subgraph admits the optimal matching with good probability. Our method combines various ideas from different fields, most notably the construction of \emph{space-efficient} interior point method (IPM), SDD system solvers, the isolation lemma, and LP duality. To the best of our knowledge, this is the first work that implements the SDD solvers and IPMs in the streaming model in $\widetilde{O}(n)$ spaces for graph matrices; previous IPM algorithms only focus on optimizing the running time, regardless of the space usage.
翻译:根据一个带有$n vertide{ O} (n) 空间和 $palte{O} (sqrt{m}) 的通路, 打破了$n$- 通行屏障。 以往的所有流算法要么需要$\ omega (n\log n) 通行证, 要么只找到一个近似的解决办法。 这个经典问题已经研究了一个多世纪了。 在本文中, 我们为最大重量双向匹配问题提出了一个新的流算法, 它使用$\ loytilde{O} (n) 空间和 $\ 通用平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面。 我们的方法将不同领域, 最显著平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,最,最,最,最,最,最突出,最,最,最,最, 最有平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面。