Geo-tagged photo based tourist attraction recommendation can discover users' travel preferences from their taken photos, so as to recommend suitable tourist attractions to them. However, existing visual content based methods cannot fully exploit the user and tourist attraction information of photos to extract visual features, and do not differentiate the significances of different photos. In this paper, we propose multi-level visual similarity based personalized tourist attraction recommendation using geo-tagged photos (MEAL). MEAL utilizes the visual contents of photos and interaction behavior data to obtain the final embeddings of users and tourist attractions, which are then used to predict the visit probabilities. Specifically, by crossing the user and tourist attraction information of photos, we define four visual similarity levels and introduce a corresponding quintuplet loss to embed the visual contents of photos. In addition, to capture the significances of different photos, we exploit the self-attention mechanism to obtain the visual representations of users and tourist attractions. We conducted experiments on a dataset crawled from Flickr, and the experimental results proved the advantage of this method.
翻译:贴有地理标签的照片吸引游客的建议可以发现用户的旅游偏好,从他们拍摄的照片中发现他们的旅游偏好,从而推荐适当的旅游景点。然而,现有的视觉内容方法无法充分利用照片的用户和旅游吸引信息来提取视觉特征,也没有区分不同照片的意义。在本文中,我们提出使用地理标签照片(MEAL)的多层次视觉相似性个人化旅游吸引建议。MEAL利用照片和互动行为数据的视觉内容获取用户和旅游景点的最终嵌入数据,然后用这些数据来预测访问概率。具体来说,我们通过跨越照片的用户和旅游吸引信息,界定了四个相近水平,并引入了相应的图像内容的视觉损失。此外,为了捕捉不同照片的意义,我们利用自我注意机制获取用户和旅游景点的视觉表现。我们在从Flickr提取的数据集上进行了实验,实验结果证明了这一方法的优势。