In a (parameterized) graph edge modification problem, we are given a graph $G$, an integer $k$ and a (usually well-structured) class of graphs $\mathcal{G}$, and ask whether it is possible to transform $G$ into a graph $G' \in \mathcal{G}$ by adding and/or removing at most $k$ edges. Parameterized graph edge modification problems received considerable attention in the last decades. In this paper we focus on finding small kernels for edge modification problems. One of the most studied problems is the \textsc{Cluster Editing} problem, in which the goal is to partition the vertex set into a disjoint union of cliques. Even if a $2k$ kernel exists for \textsc{Cluster Editing}, this kernel does not reduce the size of the instance in most cases. Therefore, we explore the question of whether linear kernels are a theoretical limit in edge modification problems, in particular when the target graphs are very structured (such as a partition into cliques for instance). We prove, as far as we know, the first sublinear kernel for an edge modification problem. Namely, we show that \textsc{Clique + Independent Set Deletion}, which is a restriction of \textsc{Cluster Deletion}, admits a kernel of size $O(k/\log k)$. We also obtain small kernels for several other edge modification problems. We prove that \textsc{Split Addition} (and the equivalent \textsc{Split Deletion}) admits a linear kernel, improving the existing quadratic kernel of Ghosh et al. \cite{ghosh2015faster}. We also prove that \textsc{Trivially Perfect Addition} admits a quadratic kernel (improving the cubic kernel of Guo \cite{guo2007problem}), and finally prove that its triangle-free version (\textsc{Starforest Deletion}) admits a linear kernel, which is optimal under ETH.
翻译:在 {( materized) 图形边缘修改问题中, 我们被给出了一个 平面 $ (G$) 、 整数 美元 和 一个( 通常结构化的) 图表类 $\ mathcal{ G}, 并询问是否有可能将 G$ 转换成一个 $ G' in\ mathcal{ G} 美元 美元 的图形 。 在过去几十年里, 参数化的图形边缘修改问题得到了相当的注意 。 在本文中, 我们侧重于找到用于边缘修改问题的小型内核 。 最研究的问题之一是 平面的平面 { Cluster 编辑} 问题之一, 目标是将头顶部分割成一个不连结的 licquencle 。 即使存在 $ kk$ 内核部分, 在大多数情况下, 平面 平面 的内核还不会减少实例。 因此, 我们探讨线性内核的内核是否是一个理论问题, 当目标图表结构非常严谨时, 也证明了我们的底部。