Loss of information in numerical simulations can arise from various sources while solving discretized partial differential equations. In particular, precision-related errors can accumulate in the quantities of interest when the simulations are performed using low-precision 16-bit floating-point arithmetic compared to an equivalent 64-bit simulation. Here, low-precision computation requires much lower resources than high-precision computation. Several machine learning (ML) techniques proposed recently have been successful in correcting the errors arising from spatial discretization. In this work, we extend these techniques to improve Computational Fluid Dynamics (CFD) simulations performed using low numerical precision. We first quantify the precision related errors accumulated in a Kolmogorov forced turbulence test case. Subsequently, we employ a Convolutional Neural Network together with a fully differentiable numerical solver performing 16-bit arithmetic to learn a tightly-coupled ML-CFD hybrid solver. Compared to the 16-bit solver, we demonstrate the efficacy of the ML-CFD hybrid solver towards reducing the error accumulation in the velocity field and improving the kinetic energy spectrum at higher frequencies.
翻译:数字模拟中的信息损失可能来自各种来源,同时解决了离散部分差异方程式。 特别是,当模拟使用低精度16位浮点数算术进行模拟时,精确相关误差可能累积在利息数量中,而模拟的数值为64位数。 这里,低精度计算需要比高精度计算低得多的资源。 最近提出的几种机器学习(ML)技术成功地纠正了空间离散产生的误差。 在这项工作中,我们推广了这些技术,改进了使用低精确度数字精确度进行的计算流力动态(CFD)模拟。 我们首先量化了在科尔莫戈罗夫强迫波动测试案中积累的精确误差。 随后,我们使用一个可完全不同的数字解算器一起进行16位数计算,学习一个紧密相联的ML-CFD混合解算器。 与16位解算器相比,我们展示了ML-CFD混合解算法在减少速度场误积和改进高频率的动能谱方面的功效。