Complex query answering (CQA) is an essential task for multi-hop and logical reasoning on knowledge graphs (KGs). Currently, most approaches are limited to queries among binary relational facts and pay less attention to n-ary facts (n>=2) containing more than two entities, which are more prevalent in the real world. Moreover, previous CQA methods can only make predictions for a few given types of queries and cannot be flexibly extended to more complex logical queries, which significantly limits their applications. To overcome these challenges, in this work, we propose a novel N-ary Query Embedding (NQE) model for CQA over hyper-relational knowledge graphs (HKGs), which include massive n-ary facts. The NQE utilizes a dual-heterogeneous Transformer encoder and fuzzy logic theory to satisfy all n-ary FOL queries, including existential quantifiers, conjunction, disjunction, and negation. We also propose a parallel processing algorithm that can train or predict arbitrary n-ary FOL queries in a single batch, regardless of the kind of each query, with good flexibility and extensibility. In addition, we generate a new CQA dataset WD50K-NFOL, including diverse n-ary FOL queries over WD50K. Experimental results on WD50K-NFOL and other standard CQA datasets show that NQE is the state-of-the-art CQA method over HKGs with good generalization capability. Our code and dataset are publicly available.
翻译:复杂解答( CQA) 是多动和逻辑推理知识图表( KGs) 的一项基本任务。 目前,大多数方法仅限于二进制关系事实的查询,而较少注意包含两个以上实体的N-ary事实( nQQ2),这在现实世界中更为普遍。 此外, 以前的 CQA 方法只能预测几种特定类型的查询, 无法灵活扩展至更复杂的逻辑查询, 从而大大限制了其应用。 为了克服这些挑战, 在这项工作中, 我们提出了一个新的 N- QA 查询( NQE ) 模型, 用于CQA 超动性关系知识图表( HKGs), 其中包括大量的 n- QQA 。 NQE 使用一种双遗传变异变异变异器和模糊逻辑理论来满足所有 n- 其它类型的 FOL 查询, 包括生存变异变异的 CKKSFSDA 。 我们还提议一种平行的处理算法, 可以在一批次中训练或预测任意的 N- OL QQ Q 查询, 包括每部的 C- K- SDFDFCA 查询, 普通数据, 显示一种不同的数据。