We propose a joint channel estimation and data detection (JED) algorithm for densely-populated cell-free massive multiuser (MU) multiple-input multiple-output (MIMO) systems, which reduces the channel training overhead caused by the presence of hundreds of simultaneously transmitting user equipments (UEs). Our algorithm iteratively solves a relaxed version of a maximum a-posteriori JED problem and simultaneously exploits the sparsity of cell-free massive MU-MIMO channels as well as the boundedness of QAM constellations. In order to improve the performance and convergence of the algorithm, we propose methods that permute the access point and UE indices to form so-called virtual cells, which leads to better initial solutions. We assess the performance of our algorithm in terms of root-mean-squared-symbol error, bit error rate, and mutual information, and we demonstrate that JED significantly reduces the pilot overhead compared to orthogonal training, which enables reliable communication with short packets to a large number of UEs.


翻译:我们建议为人口稠密的无细胞大型多用户(MU)多输入多输出输出(MIMO)系统制定联合频道估计和数据检测算法(JED),减少由数百个同时传输用户设备(UES)造成的频道培训管理费用。 我们的算法迭代解决了最大隐性JED问题的宽松版本,同时利用无细胞大型MU-MIMO频道的广度以及QAM星座的界限。 为了改进算法的性能和趋同,我们建议了一些方法,将接入点和UE指数渗透成所谓的虚拟细胞,从而导致更好的初步解决办法。 我们从根值方对立体符号错误、位误差率和相互信息的角度评估了我们的算法的性能,我们证明JED大大降低了无细胞大规模MUM-MIM频道以及QAM星座的广度。 为了改进算法的性能和趋同性。 为了改进算法的功能,我们建议了一些方法,使接入点和UE指数形成所谓的虚拟细胞。 我们评估了我们的算法在根值上的误差率率率差率差率率率差率差差差差差差率差率率率率差率率差的模型方面的功能,我们显著降低了试验管理管理管理。

0
下载
关闭预览

相关内容

专知会员服务
95+阅读 · 2021年8月28日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
YOLOv4 最强PyTorch复现来了!
CVer
3+阅读 · 2020年7月29日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年12月31日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
VIP会员
相关资讯
YOLOv4 最强PyTorch复现来了!
CVer
3+阅读 · 2020年7月29日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
论文浅尝 | Improved Neural Relation Detection for KBQA
开放知识图谱
13+阅读 · 2018年1月21日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员