For the minimization of state-based systems (i.e. the reduction of the number of states while retaining the system's semantics), there are two obvious aspects: removing unnecessary states of the system and merging redundant states in the system. In the present article, we relate the two aspects on coalgebras by defining an abstract notion of minimality using factorization systems. We will find criteria on the category that ensure uniqueness, existence, and functoriality of the minimization aspects, where the proofs instantiate to those for reachability and bisimilarity minimization in the standard coalgebra literature. Finally, we will see how the two aspects of minimization interact and under which criteria they can be sequenced in any order, like in automata minimization.
翻译:为了尽量减少以国家为基础的系统(即在保留该系统的语义学的同时减少州的数目),有两个明显的方面:消除系统中不必要的状态和合并系统中的冗余状态。在本条中,我们通过使用乘数化系统来界定一个抽象的最小化概念,将两个方面联系起来。我们将找到关于确保最小化方面的独特性、存在性和交替性的类别的标准,在这个类别中,在标准煤代数文献中,证据即时到可达性和两样性最小化的证据。最后,我们将看到最小化的两个方面是如何相互作用的,以及根据哪些标准可以按任何顺序排列,如自动最小化。