Fifth-generation (5G) New Radio (NR) cellular networks support a wide range of new services, many of which require an application-specific quality of service (QoS), e.g. in terms of a guaranteed minimum bit-rate or a maximum tolerable delay. Therefore, scheduling multiple parallel data flows, each serving a unique application instance, is bound to become an even more challenging task compared to the previous generations. Leveraging recent advances in deep reinforcement learning, in this paper, we propose a QoS-Aware Deep Reinforcement learning Agent (QADRA) scheduler for NR networks. In contrast to state-of-the-art scheduling heuristics, the QADRA scheduler explicitly optimizes for the QoS satisfaction rate while simultaneously maximizing the network performance. Moreover, we train our algorithm end-to-end on these objectives. We evaluate QADRA in a full scale, near-product, system level NR simulator and demonstrate a significant boost in network performance. In our particular evaluation scenario, the QADRA scheduler improves network throughput by 30% while simultaneously maintaining the QoS satisfaction rate of VoIP users served by the network, compared to state-of-the-art baselines.


翻译:与前几代相比,第五代(5G)新电台(NR)蜂窝网络必然会成为更具挑战性的任务。我们在本文件中提议为NR网络配备一个QOS-Aware 深强化学习仪(QADRA)调度仪(QADRA),以全面、近产品、系统级NR模拟器的方式评估QADRA,并展示网络性能的显著提升。在我们具体的评价设想中,QADRA调度仪将网络的吞吐量提高30%,同时将网络的满意度维持在基准水平上,同时将VOS用户的满意度维持在基准水平上。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
61+阅读 · 2020年2月17日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
8+阅读 · 2018年7月12日
Arxiv
5+阅读 · 2018年1月14日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员