Massive random access plays a central role in supporting the Internet of Things (IoT), where a subset of a large population of users simultaneously transmit small packets to a central base station. While there has been much research on the design of protocols for massive access in the uplink, the problem of providing message acknowledgments back to the users has been somewhat neglected. Reliable communication needs to rely on two-way communication for acknowledgement and retransmission. Nevertheless, because of the many possible subsets of active users, providing acknowledgments requires a significant amount of bits. Motivated by this, we define the problem of massive ARQ (Automatic Retransmission reQuest) protocol and introduce efficient methods for joint encoding of multiple acknowledgements in the downlink. The key idea towards reducing the number of bits used for massive acknowledgements is to allow for a small fraction of false positive acknowledgments. We analyze the implications of this approach and the impact of acknowledgment errors in scenarios with massive random access. Finally, we show that these savings can lead to a significant increase in the reliability when retransmissions are allowed since it allows the acknowledgment message to be transmitted more reliably using a much lower rate.
翻译:大规模随机访问在支持Tings(IoT)互联网方面发挥了核心作用,因为大量用户中有一部分人同时向中央基地站传输小包。虽然对设计协议在上链接中大规模访问的问题进行了大量研究,但向用户回馈信息承认的问题被多少忽略了。可靠的通信需要依靠双向通信来确认和转发。然而,由于活跃用户中的许多可能的子群,提供承认需要大量比特。我们为此确定了大规模ARQ(自动传输再传输)协议的问题,并引入了在下链接中联合编码多个确认的有效方法。减少用于大规模确认的比特数的关键想法是允许一小部分虚假肯定承认。我们分析了这种方法的影响以及承认错误在大规模随机访问的情况下的影响。最后,我们表明,如果允许再传送信息,这些节约可以更可靠地使用低得多的速率传递,那么当允许再传输信息时,可靠性就会大大提高。