The fifth-generation of wireless communication networks is required to support a range of use cases such as enhanced mobile broadband (eMBB), ultra-reliable, low-latency communications (URLLC), massive machine-type communications (mMTCs), with heterogeneous data rate, delay, and power requirements. The 4G LTE air interface uses extra overhead to enable scheduled access, which is not justified for small payload sizes. We employ a random access communication model with retransmissions for multiple users with small payloads at the low spectral efficiency regime. The radio resources are split non-orthogonally in the time and frequency dimensions. Retransmissions are combined via Hybrid Automatic Repeat reQuest (HARQ) methods, namely Chase Combining and Incremental Redundancy with a finite buffer size constraint $C_{\sf buf}$. We determine the best scaling for the spectral efficiency (SE) versus signal-to-noise ratio (SNR) per bit and for the user density versus SNR per bit, for the sum-optimal regime and when the interference is treated as noise, using a Shannon capacity approximation. Numerical results show that the scaling results are applicable over a range of $\eta$, $T$, $C_{\sf buf}$, $J$, at low received SNR values. The proposed analytical framework provides insights for resource allocation in general random access systems and specific 5G use cases for massive URLLC uplink access.
翻译:需要第五代无线通信网络支持一系列使用案例,如增强移动宽带(EMBB)、超可靠、低频通信(URLLC)、大规模机器型通信(MMMTC),数据率、延迟和电力要求各异。 4GLTE空气界面使用额外的间接费用,以便能够进行定时访问,这对于小型有效载荷大小是没有道理的。我们为低光谱效率系统使用一个随机接入通信模式,为低光谱高效度系统拥有小型有效载荷的多个用户提供再传输服务。无线电资源在时间和频度方面是非自动分割的。 重新传输是通过混合自动重复通信(HARQ)方法(即大通缩缓冲大小限制的大通和递增重置)相结合的。 我们决定了光节效率(SE)相对于信号-神经比率(SNR)的最佳比例,对于用户密度和SNR(B)比例而言,对于超值的系统来说,对于总和当将干扰作为噪音处理时,使用一个低值的RF$(R$)的系统,对5美元的分析能力框架。