This paper presents parallel and distributed algorithms for single-source shortest paths when edges can have negative weights (negative-weight SSSP). We show a framework that reduces negative-weight SSSP in either setting to $n^{o(1)}$ calls to any SSSP algorithm that works with a virtual source. More specifically, for a graph with $m$ edges, $n$ vertices, undirected hop-diameter $D$, and polynomially bounded integer edge weights, we show randomized algorithms for negative-weight SSSP with (i) $W_{SSSP}(m,n)n^{o(1)}$ work and $S_{SSSP}(m,n)n^{o(1)}$ span, given access to an SSSP algorithm with $W_{SSSP}(m,n)$ work and $S_{SSSP}(m,n)$ span in the parallel model, (ii) $T_{SSSP}(n,D)n^{o(1)}$, given access to an SSSP algorithm that takes $T_{SSSP}(n,D)$ rounds in $\mathsf{CONGEST}$. This work builds off the recent result of [Bernstein, Nanongkai, Wulff-Nilsen, FOCS'22], which gives a near-linear time algorithm for negative-weight SSSP in the sequential setting. Using current state-of-the-art SSSP algorithms yields randomized algorithms for negative-weight SSSP with (i) $m^{1+o(1)}$ work and $n^{1/2+o(1)}$ span in the parallel model, (ii) $(n^{2/5}D^{2/5} + \sqrt{n} + D)n^{o(1)}$ rounds in $\mathsf{CONGEST}$. Our main technical contribution is an efficient reduction for computing a low-diameter decomposition (LDD) of directed graphs to computations of SSSP with a virtual source. Efficiently computing an LDD has heretofore only been known for undirected graphs in both the parallel and distributed models. The LDD is a crucial step of the algorithm in [Bernstein, Nanongkai, Wulff-Nilsen, FOCS'22], and we think that its applications to other problems in parallel and distributed models are far from being exhausted.
翻译:本文展示了用于单源最短路径的平行和分布算法, 当边缘可能有负重( 负重 SSSP ) 时 。 我们展示了一个框架, 降低负重SSSP, 设置为 $@ o(1)} 任何使用虚拟源的 SS 算法 。 更具体地说, 对于以 $ 的边缘、 $ verice 、 未定向跳直径 $, 和 多元约束的整数 。 我们展示了负重 SS 的随机算法, 以 (一) 美元 SS SP (m), n (o) SP 美元 工作 和 美元 SS 的 SS (n) (n) SP liver ) 和 美元 美元 。 以 美元 美元</s>