项目名称: 递归神经网络动力学行为若干问题研究
项目编号: No.61273022
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 郑成德
作者单位: 大连交通大学
项目金额: 60万元
中文摘要: 本项目将研究不连续神经网络全局鲁棒稳定性、同步控制和状态估计问题。拟建立含模态依赖的各种时滞、具有马尔科夫参数切换和布朗运动的不连续高阶、模糊随机、随机脉冲和随机反应扩散神经网络模型,系统地解决不连续神经网络理论研究的一些难点问题,提出不连续神经网络的高性能同步控制方法,开辟不连续神经网络研究的新途径。主要创新性研究内容包括:1. 建立各种含模态依赖时滞的不连续马尔科夫切换高阶神经网络的全局稳定性矩阵不等式判据;2. 研究各种含模态依赖时滞的不连续马尔科夫切换模糊脉冲、模糊随机脉冲神经网络的稳定性问题;3. 建立各种含模态依赖时滞的不连续马尔科夫切换随机扩散、模糊随机扩散神经网络的全局稳定性矩阵不等式判据;4. 研究各种含模态依赖时滞的不连续马尔科夫切换脉冲、扩散等模糊随机混沌神经网络的同步控制和状态估计问题。上述成果将为配电网无功优化控制问题提供新的智能算法,推动相关领域理论的深入发展。
中文关键词: 随机分析;基于Wirtinger的积分不等式;二次凸组合方法;反凸组合不等式;全局渐近稳定性
英文摘要: This project mainly study the robust stability, synchronization control and state estamition of neural networks with discontinuous activation functions. We will establish some Fuzzy neural networks with mode-dependent time delays, Markovian jumping parameters, Browian motion and discontinuous activation functions. These models may include stochastic disturbance terms, high-order terms, impulsive disturbances or reaction-diffusion terms. This project will solve several difficult problems of discontinuous neural networks in theoretical study and present some synchronization control methods with high function. Therefore this project will open up new way to studying neural networks with discontinuous activations. Our main original works are as follows: (1). To adopt the matrix inequality method to propose sufficient stability conditions for neural networks with mode-dependent time delays, Markovian jumping parameters, high-order terms and discontinuous activation functions; (2). To apply the matrix inequality method to present global stability criteria for Fuzzy neural networks with mode-dependent time delays, Markovian jumping parameters, stochastic disturbance terms, impulsive disturbance terms and discontinuous activation functions; (3). To utilize the matrix inequality method to bring out global stability condit
英文关键词: stochastic analisis;Wirtinger-based integral inequality;globally asymptotic stability;quadratic convex combination;reciprocal convex combination inequalities