We propose a new second-order accurate lattice Boltzmann scheme that solves the quasi-static equations of linear elasticity in two dimensions. In contrast to previous works, our formulation solves for a single distribution function with a standard velocity set and avoids any recourse to finite difference approximations. As a result, all computational benefits of the lattice Boltzmann method can be used to full capacity. The novel scheme is systematically derived using the asymptotic expansion technique and a detailed analysis of the leading-order error behavior is provided. As demonstrated by a linear stability analysis, the method is stable for a very large range of Poisson's ratios. We consider periodic problems to focus on the governing equations and rule out the influence of boundary conditions. The analytical derivations are verified by numerical experiments and convergence studies.


翻译:我们提出一个新的二级精确的拉蒂斯·波尔茨曼计划,解决线性弹性的半静态方程式的两个方面。与以前的工程不同,我们的配方解决了标准速度组的单一分配函数,避免了任何使用有限差差近值的办法。因此,拉蒂斯·博尔茨曼方法的所有计算效益都可以全部使用。新办法是利用无症状扩展技术系统化地推导出来的,对前导序列错误行为进行了详细分析。正如线性稳定分析所显示的那样,该方法对于非常大范围的普瓦森比率来说是稳定的。我们考虑定期的问题,以注重治理方程式,并排除边界条件的影响。分析结果通过数字实验和趋同研究得到验证。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
124+阅读 · 2020年9月8日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
124+阅读 · 2020年9月8日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员