We propose a new second-order accurate lattice Boltzmann scheme that solves the quasi-static equations of linear elasticity in two dimensions. In contrast to previous works, our formulation solves for a single distribution function with a standard velocity set and avoids any recourse to finite difference approximations. As a result, all computational benefits of the lattice Boltzmann method can be used to full capacity. The novel scheme is systematically derived using the asymptotic expansion technique and a detailed analysis of the leading-order error behavior is provided. As demonstrated by a linear stability analysis, the method is stable for a very large range of Poisson's ratios. We consider periodic problems to focus on the governing equations and rule out the influence of boundary conditions. The analytical derivations are verified by numerical experiments and convergence studies.
翻译:我们提出一个新的二级精确的拉蒂斯·波尔茨曼计划,解决线性弹性的半静态方程式的两个方面。与以前的工程不同,我们的配方解决了标准速度组的单一分配函数,避免了任何使用有限差差近值的办法。因此,拉蒂斯·博尔茨曼方法的所有计算效益都可以全部使用。新办法是利用无症状扩展技术系统化地推导出来的,对前导序列错误行为进行了详细分析。正如线性稳定分析所显示的那样,该方法对于非常大范围的普瓦森比率来说是稳定的。我们考虑定期的问题,以注重治理方程式,并排除边界条件的影响。分析结果通过数字实验和趋同研究得到验证。