We present mathematical techniques for exhaustive studies of long-term dynamics of asynchronous biological system models. Specifically, we extend the notion of $\kappa$-equivalence developed for graph dynamical systems to support systematic analysis of all possible attractor configurations that can be generated when varying the asynchronous update order (Macauley and Mortveit (2009)). We extend earlier work by Veliz-Cuba and Stigler (2011), Goles et al. (2014), and others by comparing long-term dynamics up to topological conjugation: rather than comparing the exact states and their transitions on attractors, we only compare the attractor structures. In general, obtaining this information is computationally intractable. Here, we adapt and apply combinatorial theory for dynamical systems to develop computational methods that greatly reduce this computational cost. We give a detailed algorithm and apply it to ($i$) the lac operon model for Escherichia coli proposed by Veliz-Cuba and Stigler (2011), and ($ii$) the regulatory network involved in the control of the cell cycle and cell differentiation in the Caenorhabditis elegans vulva precursor cells proposed by Weinstein et al. (2015). In both cases, we uncover all possible limit cycle structures for these networks under sequential updates. Specifically, for the lac operon model, rather than examining all $10! > 3.6 \cdot 10^6$ sequential update orders, we demonstrate that it is sufficient to consider $344$ representative update orders, and, more notably, that these $344$ representatives give rise to $4$ distinct attractor structures. A similar analysis performed for the C. elegans model demonstrates that it has precisely $125$ distinct attractor structures. We conclude with observations on the variety and distribution of the models' attractor structures and use the results to discuss their robustness.
翻译:具体地说,我们扩展了为图形动态系统开发的“$\kappa$-equality”概念,以支持系统分析所有可能的吸引器配置,这些配置在不同步更新顺序(Macauley和Mortveit (2009年))不同时能够产生。我们将Veliz-Cuba和Stigler(2011年)、Goles等人(2014年)的早期工作扩展至长期动态与地形上的最新吸引器结构相比较:我们没有比较吸引器的确切状态及其过渡,而只是比较吸引器结构。一般而言,获得这种信息是计算器系统在不统一更新顺序(Macauley和Mortveit (2009) (2009年) 时可以生成的。我们给出了详细的算法并将其应用到(美元) Escherichichia coli 的线型模型。我们和 Stigler (2011年) 和 (二) 用于控制细胞循环和细胞内分解结构的调控器(美元),我们用这些分解器的模型显示的是,这些分解的分解器的模型结构。