Randomized response (RR) designs are used to collect response data about sensitive behaviors (e.g., criminal behavior, sexual desires). The modeling of RR data is more complex, since it requires a description of the RR process. For the class of generalized linear mixed models (GLMMs), the RR process can be represented by an adjusted link function, which relates the expected RR to the linear predictor, for most common RR designs. The package GLMMRR includes modified link functions for four different cumulative distributions (i.e., logistic, cumulative normal, gumbel, cauchy) for GLMs and GLMMs, where the package lme4 facilitates ML and REML estimation. The mixed modeling framework in GLMMRR can be used to jointly analyse data collected under different designs (e.g., dual questioning, multilevel, mixed mode, repeated measurements designs, multiple-group designs). The well-known features of the GLM and GLMM (package lme4) software are remained, while adding new model-fit tests, residual analyses, and plot functions to give support to a profound RR data analysis. Data of H\"{o}glinger and Jann (2018) and H\"{o}glinger, Jann, and Diekmann (2014) is used to illustrate the methodology and software.


翻译:随机应变(RR)设计用于收集关于敏感行为(如犯罪行为、性欲)的响应数据。RR数据的建模更为复杂,因为它要求说明RR过程。对于一般线性混合模型(GLMMMs)的类别,RR进程可以由调整的链接功能代表,该功能将预期RR与线性预测器相联系,用于大多数常见RR设计。GLMRMR软件包包括GLMS和GLMMMs四个不同累积分布(如后勤、累积、正常、口香、口香、口香、口香)的修改链接功能,而LMMMM和GLMMMs的包有助于R进程。GLM4的混合建模框架可以用来联合分析在不同设计下收集的数据(如双重询问、多层次、混合模式、重复测量设计、多组设计) 。GLMM和GLMMM(lM(lMe4)软件的著名功能仍然存在,同时添加新的模型测试、残余分析和绘图功能,以支持深入的HRRRRRR和DRR的系统(20); 和DRRl) 和DRLI 正在使用的模型分析。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
已删除
将门创投
3+阅读 · 2017年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月19日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
原创 | Attention Modeling for Targeted Sentiment
黑龙江大学自然语言处理实验室
25+阅读 · 2017年11月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
已删除
将门创投
3+阅读 · 2017年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员