Software projects use Issue Tracking Systems (ITS) like JIRA to track issues and organize the workflows around them. Issues are often inter-connected via different links such as the default JIRA link types Duplicate, Relate, Block, or Subtask. While previous research has mostly focused on analyzing and predicting duplication links, this work aims at understanding the various other link types, their prevalence, and characteristics towards a more reliable link type prediction. For this, we studied 607,208 links connecting 698,790 issues in 15 public JIRA repositories. Besides the default types, the custom types Depend, Incorporate, Split, and Cause were also common. We manually grouped all 75 link types used in the repositories into five general categories: General Relation, Duplication, Composition, Temporal / Causal, and Workflow. Comparing the structures of the corresponding graphs, we observed several trends. For instance, Duplication links tend to represent simpler issue graphs often with two components and Composition links present the highest amount of hierarchical tree structures (97.7%). Surprisingly, General Relation links have a significantly higher transitivity score than Duplication and Temporal / Causal links. Motivated by the differences between the link types and by their popularity, we evaluated the robustness of two state-of-the-art duplicate detection approaches from the literature on the JIRA dataset. We found that current deep-learning approaches confuse between Duplication and other links in almost all repositories. On average, the classification accuracy dropped by 6% for one approach and 12% for the other. Extending the training sets with other link types seems to partly solve this issue. We discuss our findings and their implications for research and practice.


翻译:软件项目使用JIRA这样的问题跟踪系统(ITS)来跟踪问题并组织周围的工作流程。问题往往通过不同的链接相互连接,例如默认的 JIRA链接类型重复、关联性、布洛克或Subtask 。虽然先前的研究主要侧重于分析和预测重复性联系,但这项工作的目的是了解其他各种链接类型、其流行程度和特征,以便进行更可靠的链接类型预测。为此,我们研究了607 208个链接,连接了15个JIRA公共储存库中的698 790个问题。除了默认类型外,定制类型脱节、合并、分解和起因也非常常见。我们手工将存放库中使用的所有75个链接类型都分为五大类:通用链接、重复、结构、结构性链接/卡萨勒和工作流。我们观察到了几种趋势。例如,Duration连接往往代表更简单的问题图表,其中有两个组成部分和构成最高层次的树级结构(97.7%)。 令人惊讶的是,General Relation联系的过渡性评分化程度几乎更高。我们从Dolationalalalationality 和Tallievilations reviewd viewd viewd dal viewd viewd views views viewd view view viewd viewd viewd viewbilding viewbilding viewd viewbild viewm viewm viewmlation viewd viewd viewd viewmlations viewd viewd viewd viewbild viewsal viewsald viewsald viewsald viald viewsal viewd viewd viewsaldal viewsaldaldaldd viewsaldaldald viewd viewd viewd views viewd vial vial vial vidal viewsal vi vildal vildal vild vildal vi vid vi

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月15日
Arxiv
0+阅读 · 2022年6月14日
Arxiv
0+阅读 · 2022年6月13日
Arxiv
0+阅读 · 2022年6月9日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
31+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员