We develop new method PROTES for optimization of the multidimensional arrays and discretized multivariable functions, which is based on a probabilistic sampling from a probability density function given in the low-parametric tensor train format. We tested it on complex multidimensional arrays taken, among other, from real-world applications, including unconstrained binary optimization and optimal control problems, for which the possible number of elements is up to $2^{100}$ elements. In numerical experiments, both on analytic model functions and on complex problems, our algorithm outperform existing popular discrete optimization methods (Particle Swarm Optimization, Covariance Matrix Adaptation, Differential Evolution and others). Moreover, we take the same set of hyperparameters of our algorithm for all numerical applications.
翻译:我们开发了优化多维阵列和离散多变量功能的新方法PROTES,该方法基于从低参数阵列格式中给出的概率密度函数进行概率抽样。我们用复杂的多维阵列进行了测试,这些阵列除其他外,来自现实世界的应用,包括不受限制的二进制优化和最佳控制问题,其中可能的元素数量高达2 ⁇ 100美元。在数字实验中,无论是分析模型函数还是复杂问题,我们的算法都优于现有的流行离散优化方法(粒子阵列优化、共变矩阵适应、差异进化等)。此外,我们对所有数字应用都采用了与我们算法相同的高参数。