Nowadays, analysis of Transparent Environmental Microorganism Images (T-EM images) in the field of computer vision has gradually become a new and interesting spot. This paper compares different deep learning classification performance for the problem that T-EM images are challenging to analyze. We crop the T-EM images into 8 * 8 and 224 * 224 pixel patches in the same proportion and then divide the two different pixel patches into foreground and background according to ground truth. We also use four convolutional neural networks and a novel ViT network model to compare the foreground and background classification experiments. We conclude that ViT performs the worst in classifying 8 * 8 pixel patches, but it outperforms most convolutional neural networks in classifying 224 * 224 pixel patches.
翻译:目前,计算机视觉领域透明环境微生物图像分析(T-EM图像)逐渐成为一个有趣的新点。本文比较了T-EM图像分析困难的问题的不同深层次学习分类性能。 我们将T-EM图像切成8 * 8 和224 * 224 像素补丁, 比例相同, 然后根据地面真相将两个不同的像素补丁分割成前景和背景。 我们还使用四个神经神经网络和一个新颖的VIT网络模型来比较地表和背景分类实验。 我们的结论是, VIT在对8 * 8 像素补丁进行分类方面表现最差, 但它在对224 * 224 像素补丁进行分类时, 超越了大多数革命性神经网络。