In this work we consider the approximability of $\textsf{Max-CSP}(f)$ in the context of sketching algorithms and completely characterize the approximability of all Boolean CSPs. Specifically, given $f$, $\gamma$ and $\beta$ we show that either (1) the $(\gamma,\beta)$-approximation version of $\textsf{Max-CSP}(f)$ has a linear sketching algorithm using $O(\log n)$ space, or (2) for every $\epsilon > 0$ the $(\gamma-\epsilon,\beta+\epsilon)$-approximation version of $\textsf{Max-CSP}(f)$ requires $\Omega(\sqrt{n})$ space for any sketching algorithm. We also extend previously known lower bounds for general streaming algorithms to a wide variety of problems, and in particular the case of $k=2$ where we get a dichotomy and the case when the satisfying assignments of $f$ support a distribution on $\{-1,1\}^k$ with uniform marginals. Our positive results show wider applicability of bias-based algorithms used previously by [GVV17] and [CGV20] by giving a systematic way to discover biases. Our negative results combine the Fourier analytic methods of [KKS15], which we extend to a wider class of CSPs, with a rich collection of reductions among communication complexity problems that lie at the heart of the negative results.
翻译:在这项工作中,我们考虑到$\ textsf{Max-CSP}(f) 在草图算法的背景下,$\ textsf{Max-CSP}(f) 的近似性。 具体地说,考虑到美元、 $\ gamma$ 和 $\beta$, 我们发现, $( gamma,\beta) $- accolation 版本的 $( textsf{Max- CSP} (f) (f) 中, $( log n) 的线性草图算法, 或者 (2) $\ epsilon > 0$( gamma-\\ epsilon,\beta\ epslon) 和 $\ gobeta- a proflormaxal commlal), 将我们一般流算法的下限值范围扩大到了各种各样的问题, 特别是以 $ C=2xx 的直线性计算结果, 将我们系统化的Slalalalalalalal- sal as assal as as exal us us us laxes lax lading a press usluslation a passional