Knowledge Graphs (KGs) often have two characteristics: heterogeneous graph structure and text-rich entity/relation information. Text-based KG embeddings can represent entities by encoding descriptions with pre-trained language models, but no open-sourced library is specifically designed for KGs with PLMs at present. In this paper, we present LambdaKG, a library for KGE that equips with many pre-trained language models (e.g., BERT, BART, T5, GPT-3), and supports various tasks (e.g., knowledge graph completion, question answering, recommendation, and knowledge probing). LambdaKG is publicly open-sourced at https://github.com/zjunlp/PromptKG/tree/main/lambdaKG, with a demo video at http://deepke.zjukg.cn/lambdakg.mp4 and long-term maintenance.
翻译:知识图(KGs)通常有两个特点:多式图表结构和文本丰富的实体/关系信息。基于文本的KG嵌入器可以通过对培训前语言模型的描述进行编码来代表实体,但目前没有专门为具有PLMs的KGs设计开源库。本文介绍KGeo图书馆LamdaKG,该图书馆配备了许多预先培训的语言模型(例如,BERT、BART、T5、GPT-3),并支持各种任务(例如,知识图的完成、问答、建议和知识调查)。 LambdaKG在https://github.com/zjunlp/PromptKG/main/lambdaKG上公开开源,在http://depke.zjukg.cn/lambdakk.mp4上播放一个演示视频,并在http://depke.zjukg.cn/lambdakgkg.mp4上进行长期维护。</s>