We study network games in which players choose both an action level (e.g., effort) that creates spillovers for others and the partners with whom they associate. We introduce a framework and two solution concepts that extend standard solutions for each choice made separately: Nash equilibrium in actions and pairwise stability in links. Our main results show that, under suitable monotonicity conditions on incentives, stable networks take simple forms. The first condition concerns whether links create positive or negative payoff spillovers. The second condition concerns whether actions and links are strategic complements or substitutes. Together, these conditions allow a taxonomy of how network structure depends on economic primitives. We apply our model to understand the consequences of competition for status, to microfound matching models that assume clique formation, and to interpret empirical findings that highlight unintended consequences of group design.


翻译:我们研究网络游戏,让玩家同时选择一个行动级别(如努力),为其他人及其伙伴创造外溢效应。我们引入一个框架和两个解决方案概念,为每个选择分别提供标准解决方案:纳什在行动中的平衡和双向稳定联系。我们的主要结果显示,在适当的奖励单一性条件下,稳定的网络以简单的形式出现。第一个条件是,联系是否产生正或负的溢出效应。第二个条件是,行动和联系是战略补充还是替代。这些条件加在一起,允许对网络结构如何依赖经济原始生物进行分类。我们运用我们的模型来理解竞争地位的后果,对假定俱乐部形成的微型匹配模式,并解释突出群体设计意外后果的经验性发现。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
27+阅读 · 2020年6月19日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
VIP会员
相关VIP内容
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Top
微信扫码咨询专知VIP会员