Existing techniques for mitigating dataset bias often leverage a biased model to identify biased instances. The role of these biased instances is then reduced during the training of the main model to enhance its robustness to out-of-distribution data. A common core assumption of these techniques is that the main model handles biased instances similarly to the biased model, in that it will resort to biases whenever available. In this paper, we show that this assumption does not hold in general. We carry out a critical investigation on two well-known datasets in the domain, MNLI and FEVER, along with two biased instance detection methods, partial-input and limited-capacity models. Our experiments show that in around a third to a half of instances, the biased model is unable to predict the main model's behavior, highlighted by the significantly different parts of the input on which they base their decisions. Based on a manual validation, we also show that this estimate is highly in line with human interpretation. Our findings suggest that down-weighting of instances detected by bias detection methods, which is a widely-practiced procedure, is an unnecessary waste of training data. We release our code to facilitate reproducibility and future research.


翻译:现有减轻数据集偏差的技术往往利用偏差模型来确定偏差实例。这些偏差案例的作用在培训主要模型以加强其对分配外数据的稳健性的过程中被削弱。这些技术的一个共同核心假设是,主要模型处理的偏差事件与偏差模式相似,即只要有偏见,就会采取偏差做法。在本文中,我们表明这一假设并不普遍。我们对该领域的两个众所周知的数据集,即MNLI和FEWER,以及两个偏差案例检测方法,即部分输入和有限容量模型,进行了严格调查。我们的实验表明,在大约三分之一到一半的情况下,偏差模式无法预测主要模型的行为,而它们的决定所依据的投入大不相同。在人工验证的基础上,我们还表明这一估计与人类的解释高度一致。我们的研究结果表明,通过偏差检测方法检测发现的情况的降级是不必要的浪费,这是一种广泛操作的程序。我们发布我们的代码是为了便利重新预测和将来的研究。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年4月23日
专知会员服务
107+阅读 · 2020年12月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Arxiv
0+阅读 · 2021年10月24日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
16+阅读 · 2021年7月18日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2021年4月23日
专知会员服务
107+阅读 · 2020年12月21日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】卷积神经网络类间不平衡问题系统研究
机器学习研究会
6+阅读 · 2017年10月18日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Top
微信扫码咨询专知VIP会员