The optimization problems associated with training generative adversarial neural networks can be largely reduced to certain {\em non-monotone} variational inequality problems (VIPs), whereas existing convergence results are mostly based on monotone or strongly monotone assumptions. In this paper, we propose {\em optimistic dual extrapolation (OptDE)}, a method that only performs {\em one} gradient evaluation per iteration. We show that OptDE is provably convergent to {\em a strong solution} under different coherent non-monotone assumptions. In particular, when a {\em weak solution} exists, the convergence rate of our method is $O(1/{\epsilon^{2}})$, which matches the best existing result of the methods with two gradient evaluations. Further, when a {\em $\sigma$-weak solution} exists, the convergence guarantee is improved to the linear rate $O(\log\frac{1}{\epsilon})$. Along the way--as a byproduct of our inquiries into non-monotone variational inequalities--we provide the near-optimal $O\big(\frac{1}{\epsilon}\log \frac{1}{\epsilon}\big)$ convergence guarantee in terms of restricted strong merit function for monotone variational inequalities. We also show how our results can be naturally generalized to the stochastic setting, and obtain corresponding new convergence results. Taken together, our results contribute to the broad landscape of variational inequality--both non-monotone and monotone alike--by providing a novel and more practical algorithm with the state-of-the-art convergence guarantees.


翻译:与培训基因化对抗神经网络相关的优化问题可以大大降低到某些非分子差异性不平等问题(VIPs),而现有的趋同结果则主要基于单调或强烈单调假设。在本文中,我们建议采用乐观的双向外推法(OptDE),这种方法只能按迭代来进行“百分之一”的梯度评价。我们显示,OptDE在不同的统一非分子差异假设下,可以明显地与“百分率”相趋同,但不同的非分子差异性假设下,情况不同。特别是,当存在“百分数”薄弱的解决方案时,我们方法的趋同率主要是基于单调或强烈的单调假设。此外,当存在“百分数”的双向梯度计算方法时,趋同的保证会提高到线性比率 $(log\ refrac) {1 和“百分数”的内分数(rotial-ral-lational-lational-lational-lational-lational-al-lational-lational-lational-lational-lational-lational-lation-lation-lation-lational-lation-lation-lation-lation) ral-lation-lation-lation-lation-l) ral-lation-lup ral-lupal-l) y-s-s-l) ral-lation-s-s-s-s-s-s-s-lation-lation-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l-l

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
186+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月28日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
4+阅读 · 2017年12月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员