The paper deals with Age of Information (AoI) in a network of multiple sources and parallel queues with buffering capabilities, preemption in service and losses in served packets. The queues do not communicate between each other and the packets are dispatched through the queues according to a predefined probabilistic routing. By making use of the Stochastic Hybrid System (SHS) method, we provide a derivation of the average AoI of a system of two parallel queues (with and without buffer capabilities) and compare the results with those of a single queue. We show that known results of packets delay in Queuing Theory do not hold for the AoI. Unfortunately, the complexity of computing the average AoI using the SHS method increases highly with the number of queues. We therefore provide an upper bound of the average AoI in a system of an arbitrary number of M/M/1/(N+1) queues and show its tightness in various regimes. This upper bound allows providing a tight approximation of the average AoI with a very low complexity. We then provide a game framework that allows each source to determine its best probabilistic routing decision. By using Mean Field Games, we provide an analysis of the routing game framework, propose an efficient iterative method to find the routing decision of each source and prove its convergence to the desired equilibrium.
翻译:本文涉及由多个来源和平行队列组成的信息时代( AoI), 它是一个具有缓冲能力、 服务先发制人、 服务包丢失的网络中的信息时代( AoI ) 。 队列不相互沟通, 并且根据预先定义的概率性路径通过队列发送数据包。 我们利用Shochatic 混合系统( SHS) 的方法, 提供了两个平行队列( 有和没有缓冲能力)系统的平均 AoI 的衍生结果, 并且将结果与单个队列的结果进行比较。 我们显示, 已知的 调用理论包延迟的结果并不支持 AoI 。 不幸的是, 使用 SHS 方法计算平均AoI 的复杂程度随排队列数量的变化而增加。 因此, 我们提供了一个平均AoI 的上限, 在一个任意数为 M/ M/1/ ( N+ 1) 的排队列系统中, 并显示它在不同制度中的紧紧紧。 这一上限使得平均的AoI 相近近一点, 复杂性非常低 。 我们然后提供一个游戏框架,, 使得每个选择的游戏的游戏规则 能够找到一个最佳的平流 。