One of the most pressing problems in modern analysis is the study of the growth rate of the norms of all possible matrix products $\|A_{i_{n}}\cdots A_{i_{0}}\|$ with factors from a set of matrices $\mathscr{A}$. So far, only for a relatively small number of classes of matrices $\mathscr{A}$ has it been possible to rigorously describe the sequences of matrices $\{A_{i_{n}}\}$ that guarantee the maximal growth rate of the corresponding norms. Moreover, in almost all theoretically studied cases, the index sequences $\{i_{n}\}$ of matrices maximizing the norms of the corresponding matrix products turned out to be periodic or so-called Sturmian sequences, which entails a whole set of ``good'' properties of the sequences $\{A_{i_{n}}\}$, in particular the existence of a limiting frequency of occurrence of each matrix factor $A_{i}\in\mathscr{A}$ in them. The paper determines a class of $2\times 2$ matrices consisting of two matrices similar to rotations of the plane in which the sequence $\{A_{i_{n}}\}$ maximizing the growth rate of the norms $\|A_{i_{n}}\cdots A_{i_{0}}\|$ is not Sturmian. All considerations are based on numerical modeling and cannot be considered mathematically rigorous in this part. Rather, they should be interpreted as a set of questions for further comprehensive theoretical analysis.


翻译:现代分析中最紧迫的问题之一是研究所有可能的矩阵产品“A”和“A”和“A”之间的标准增长率。到目前为止,只有数量相对较少的“马斯克勒”和“A”类,才可能严格描述保证相应规范最大增长率的基质序列。此外,在几乎所有理论上研究的案例中,将相应矩阵产品规范最大化的指数序列($$)与一系列的“马斯克勒”或“A”等要素的“马斯克勒”和“A”等要素的“好”等要素的增长率变化率是定期的或所谓的“Sturmian”等要素。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年4月25日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2022年2月2日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年4月25日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员