Additive manufacturing (AM) technology is being increasingly adopted in a wide variety of application areas due to its ability to rapidly produce, prototype, and customize designs. AM techniques afford significant opportunities in regard to nuclear materials, including an accelerated fabrication process and reduced cost. High-fidelity modeling and simulation (M\&S) of AM processes is being developed in Idaho National Laboratory (INL)'s Multiphysics Object-Oriented Simulation Environment (MOOSE) to support AM process optimization and provide a fundamental understanding of the various physical interactions involved. In this paper, we employ Bayesian inverse uncertainty quantification (UQ) to quantify the input uncertainties in a MOOSE-based melt pool model for AM. Inverse UQ is the process of inversely quantifying the input uncertainties while keeping model predictions consistent with the measurement data. The inverse UQ process takes into account uncertainties from the model, code, and data while simultaneously characterizing the uncertain distributions in the input parameters--rather than merely providing best-fit point estimates. We employ measurement data on melt pool geometry (lengths and depths) to quantify the uncertainties in several melt pool model parameters. Simulation results using the posterior uncertainties have shown improved agreement with experimental data, as compared to those using the prior nominal values. The resulting parameter uncertainties can be used to replace expert opinions in future uncertainty, sensitivity, and validation studies.


翻译:由于具备快速生产、原型和定制设计的能力,在多种应用领域越来越多地采用添加制造技术。AM技术为核材料提供了重要机会,包括加速制造过程和降低成本。Idaho国家实验室(INL)多物理对象定向模拟环境(MOOSE)正在开发AM工艺的高纤维模型和模拟(M ⁇ S),以支持AM工艺优化,并使人们从根本上了解所涉及的各种物理互动。在本文件中,我们使用Bayesian反向不确定性量化(UQ),以量化以MOOSE为基础的熔融池模型中的投入不确定性,包括加速制造过程和降低成本。UQ是逆向地量化投入不确定性的过程,同时保持模型预测与测量数据相一致。UQ的反面过程考虑到模型、代码和数据的不确定性,同时确定输入参数的不确定性分布,而不是仅仅提供最佳的点估计。我们使用以熔化池计量(长度和深度)的测量数据定量数据数据,在使用前期模拟数据模型时,用经改进的不确定性进行模拟的实验性分析,然后用这些模型将模型的不确定性量化。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月9日
Arxiv
0+阅读 · 2021年7月7日
Arxiv
0+阅读 · 2021年7月6日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员