Ranks estimated from data are uncertain and this poses a challenge in many applications. The need to measure the uncertainty in sample ranks has been recognized for some time, but the previous literature considering this problem has been concentrated on measuring the uncertainty of individual ranks and not the joint uncertainty. We characterize the relationship between parameter uncertainty and rank uncertainty in terms of linear extensions of a partial order and use this characterization to propose a measure of the joint uncertainty in a sample ranking. We provide efficient algorithms for several questions of interest and also derive valid simultaneous confidence intervals for the individual ranks. We apply our methods to both simulated and real data and make them available through the R package rankUncertainty.


翻译:从数据中估计的等级是不确定的,这在许多应用中构成挑战。测量抽样等级的不确定性的必要性已经得到承认一段时间了,但以前研究这一问题的文献一直集中于衡量个别等级的不确定性,而不是共同的不确定性。我们从部分顺序线性扩展的角度来描述参数不确定性和等级不确定性之间的关系,并用这种特征来提出衡量抽样等级中共同不确定性的尺度。我们为若干感兴趣的问题提供有效的算法,并为个别等级提供有效的同时信任间隔。我们运用我们的方法模拟和真实的数据,并通过R包装单级Uncurety提供这些数据。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2021年7月15日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
8+阅读 · 2021年5月20日
Arxiv
4+阅读 · 2018年11月26日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员