Federated Learning (FL) has become a key choice for distributed machine learning. Initially focused on centralized aggregation, recent works in FL have emphasized greater decentralization to adapt to the highly heterogeneous network edge. Among these, Hierarchical, Device-to-Device and Gossip Federated Learning (HFL, D2DFL \& GFL respectively) can be considered as foundational FL algorithms employing fundamental aggregation strategies. A number of FL algorithms were subsequently proposed employing multiple fundamental aggregation schemes jointly. Existing research, however, subjects the FL algorithms to varied conditions and gauges the performance of these algorithms mainly against Federated Averaging (FedAvg) only. This work consolidates the FL landscape and offers an objective analysis of the major FL algorithms through a comprehensive cross-evaluation for a wide range of operating conditions. In addition to the three foundational FL algorithms, this work also analyzes six derived algorithms. To enable a uniform assessment, a multi-FL framework named FLAGS: Federated Learning AlGorithms Simulation has been developed for rapid configuration of multiple FL algorithms. Our experiments indicate that fully decentralized FL algorithms achieve comparable accuracy under multiple operating conditions, including asynchronous aggregation and the presence of stragglers. Furthermore, decentralized FL can also operate in noisy environments and with a comparably higher local update rate. However, the impact of extremely skewed data distributions on decentralized FL is much more adverse than on centralized variants. The results indicate that it may not be necessary to restrict the devices to a single FL algorithm; rather, multi-FL nodes may operate with greater efficiency.
翻译:联邦学习联合会(FL)已成为分布式机器学习的关键选择。 最初以集中集成为焦点,最近FL的工作强调更分散化,以适应高度多样化的网络边缘。 其中,等级、设备到设计以及Gossip Federed Learning(分别为HFL、D2DFL ⁇ GFL)可被视为采用基本聚合战略的基础FL算法。随后,一些FL算法提议采用多种基本汇总计划。然而,现有的研究将FL算法置于不同的条件之下,并衡量这些算法的性能,主要是为了适应高度分散化网络边缘。 这项工作通过对多种操作条件的综合交叉评价,对FL主要算法(分别为HFL, D2DFL ⁇ GFFL)进行客观分析。 除了三个基础的FL算法之外,这项工作还分析了六种衍生的算法。 为了进行统一评估,一个名为FLAGS的多LFL框架: 联邦学习联盟模拟测试显示这些算法的性效果,主要是为了快速配置FL的FL Raldaldaldal dal oration orationald oration oraldaldaldald orgald orgald orgald orgald orgald orgald lax lax laxald daldaldaldaldaldaldaldald lax laxaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald lax lax lax lax laxaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald