This paper presents DEEGITS (Deep Learning Based Heterogeneous Traffic State Measurement), a comprehensive framework that leverages state-of-the-art convolutional neural network (CNN) techniques to accurately and rapidly detect vehicles and pedestrians, as well as to measure traffic states in challenging scenarios (i.e., congestion, occlusion). In this study, we enhance the training dataset through data fusion, enabling simultaneous detection of vehicles and pedestrians. Image preprocessing and augmentation are subsequently performed to improve the quality and quantity of the dataset. Transfer learning is applied on the YOLOv8 pretrained model to increase the model's capability to identify a diverse array of vehicles. Optimal hyperparameters are obtained using the Grid Search algorithm, with the Stochastic Gradient Descent (SGD) optimizer outperforming other optimizers under these settings. Extensive experimentation and evaluation demonstrate substantial accuracy within the detection framework, with the model achieving 0.794 mAP@0.5 on the validation set and 0.786 mAP@0.5 on the test set, surpassing previous benchmarks on similar datasets. The DeepSORT multi-object tracking algorithm is incorporated to track detected vehicles and pedestrians in this study. Finally, the framework is tested to measure heterogeneous traffic states in mixed traffic conditions. Two locations with differing traffic compositions and congestion levels are selected: one motorized-dominant location with moderate density and one non-motorized-dominant location with higher density. Errors are statistically insignificant for both cases, showing correlations from 0.99 to 0.88 and 0.91 to 0.97 for heterogeneous traffic flow and speed measurements, respectively.
翻译:暂无翻译