Heterogeneity across clients in federated learning (FL) usually hinders the optimization convergence and generalization performance when the aggregation of clients' knowledge occurs in the gradient space. For example, clients may differ in terms of data distribution, network latency, input/output space, and/or model architecture, which can easily lead to the misalignment of their local gradients. To improve the tolerance to heterogeneity, we propose a novel federated prototype learning (FedProto) framework in which the clients and server communicate the abstract class prototypes instead of the gradients. FedProto aggregates the local prototypes collected from different clients, and then sends the global prototypes back to all clients to regularize the training of local models. The training on each client aims to minimize the classification error on the local data while keeping the resulting local prototypes sufficiently close to the corresponding global ones. Moreover, we provide a theoretical analysis to the convergence rate of FedProto under non-convex objectives. In experiments, we propose a benchmark setting tailored for heterogeneous FL, with FedProto outperforming several recent FL approaches on multiple datasets.


翻译:在联合学习(FL)中,客户之间的差异通常会妨碍客户知识汇总在梯度空间时的优化趋同和概括性业绩。例如,客户在数据分布、网络延缓度、输入/产出空间和/或模型结构方面可能有所不同,这很容易导致当地梯度的错配。为了改善对异性容忍度,我们提议了一个新型的Federal 原型学习(FedProto)框架,客户和服务器在其中传送抽象的等级原型,而不是梯度。FedProto综合了从不同客户收集的当地原型,然后将全球原型发送给所有客户,以便对当地模型进行培训。关于每个客户的培训旨在尽可能减少当地数据的分类错误,同时使由此产生的本地原型与相应的全球原型保持足够接近。此外,我们对FedProto在非convelx目标下的趋同率进行理论分析。在实验中,我们提议为异性FedProto设定一个基准,在多个数据集上比最近几个FL方法。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月4日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
One-Shot Federated Learning
Arxiv
9+阅读 · 2019年3月5日
VIP会员
相关VIP内容
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员