To improve speech intelligibility and speech quality in noisy environments, binaural noise reduction algorithms for head-mounted assistive listening devices are of crucial importance. Several binaural noise reduction algorithms such as the well-known binaural minimum variance distortionless response (MVDR) beamformer have been proposed, which exploit spatial correlations of both the target speech and the noise components. Furthermore, for single-microphone scenarios, multi-frame algorithms such as the multi-frame MVDR (MFMVDR) filter have been proposed, which exploit temporal instead of spatial correlations. In this contribution, we propose a binaural extension of the MFMVDR filter, which exploits both spatial and temporal correlations. The binaural MFMVDR filters are embedded in an end-to-end deep learning framework, where the required parameters, i.e., the speech spatio-temporal correlation vectors as well as the (inverse) noise spatio-temporal covariance matrix, are estimated by temporal convolutional networks (TCNs) that are trained by minimizing the mean spectral absolute error loss function. Simulation results comprising measured binaural room impulses and diverse noise sources at signal-to-noise ratios from -5 dB to 20 dB demonstrate the advantage of utilizing the binaural MFMVDR filter structure over directly estimating the binaural multi-frame filter coefficients with TCNs.


翻译:为改善噪音在噪音环境中的言语感知性和言语质量,对于使用时间而不是空间相关关系来利用MDMDR(MFMMDR)过滤器(MFMMDR)过滤器(MFMMDR)过滤器(MFMMDR)过滤器(MFMDR)过滤器(MFMDR)过滤器(MVDR)过滤器(MVDR)调节器(MVDR)调节器(MVDR)调节器(MMDR)调节器(MDR)调节器(MDR)调节器(MDR)调节器(MDR)调节器(MMDR)调节器(MDR)调节器(MMDR)调节器(MMDR)调节器(MMDR)调节器(MMDMDR)调节器(MDR)调节器(MDR)调节器(MFMDR)(MD(MDR)调节器(MDR)调节器(MDMDML)(MDR)(MD 绝对错差(B)结构(MDR)结构(Bin-BR)的中间结构(BB)的中间结构(MB),通过测量器(BBA(B)测量器(B)的平质变压(B)的平压(B)测量器(B)的平压(B)的平压(B)测量器(B)测试(B)测量器(B)测量法(B)测试,通过测量(B)调节器(B)调节器(B)测试,通过测量(B)的平压(B)的平压(B)测试(B)的平价(B)测试(B)测试(B)结构(B)测量器(B)测试(BR)的平压(B)的平压(BR)的平压(B)的平压(B)的平压(BR)的平压(B)的平压(B)的平压(B)结构)的平压(B)的平压(B)的平压(B)的平压(B)的平压(B)

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月8日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员