Cram, Domineering, and Arc Kayles are well-studied combinatorial games. They are interpreted as edge-selecting-type games on graphs, and the selected edges during a game form a matching. In this paper, we define a generalized game called Colored Arc Kayles, which includes these games. Colored Arc Kayles is played on a graph whose edges are colored in black, white, or gray, and black (resp., white) edges can be selected only by the black (resp., white) player, although gray edges can be selected by both black and white players. We first observe that the winner determination for Colored Arc Kayles can be done in $O^*(2^n)$ time by a simple algorithm, where $n$ is the order of a graph. We then focus on the vertex cover number, which is linearly related to the number of turns, and show that Colored Arc Kayles, BW-Arc Kayles, and Arc Kayles are solved in time $O^*(1.4143^{\tau^2+3.17\tau})$, $O^*(1.3161^{\tau^2+4{\tau}})$, and $O^*(1.1893^{\tau^2+6.34{\tau}})$, respectively, where $\tau$ is the vertex cover number. Furthermore, we present an $O^*((n/\nu+1)^{\nu})$-time algorithm for Arc Kayles, where $\nu$ is neighborhood diversity. We finally show that Arc Kayles on trees can be solved in $O^* (2^{n/2})(=O(1.4143^n))$ time, which improves $O^*(3^{n/3})(=O(1.4423^n))$ by a direct adjustment of the analysis of Bodlaender et al.'s $O^*(3^{n/3})$-time algorithm for Node Kayles.


翻译:Cram、 Domineering 和 Arc Kayles 是受到很好研究的组合式游戏 。 它们被解读为在图表中选择边缘型的游戏, 在游戏中选择的边缘值为匹配。 在本文中, 我们定义了一个名为 Cored Arc Kayles 的通用游戏, 其中包括这些游戏 。 彩色的Arc Kayles 是在一个以黑、 白或灰色颜色和黑色( 重写、 白) 边数只能由黑( 重写、 白) 玩家选择 。 尽管灰色边缘可以由黑玩家和白玩家选择 。 我们首先看到, 彩色的Arc Kayles 的胜者确定可以用$@ ( 2 ⁇ ) 来完成, 彩色的游戏是 $ ( 0. 0. 0. 20) O= 美元 = 美元 。 然后我们聚焦于旋转的数, 彩色的弧 Kayles 、 BW- Arc Kayles 和 Arc Kayles 在时间 $ $ $___ $_ $_ $_ $_ $_ $_ $_ $_ 美元 $_ 4, 这里, 美元 4, 这里, 美元 美元 4, 我们的 4, 4, 这里可以解算 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年1月4日
Arxiv
0+阅读 · 2023年1月3日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员