Cram, Domineering, and Arc Kayles are well-studied combinatorial games. They are interpreted as edge-selecting-type games on graphs, and the selected edges during a game form a matching. In this paper, we define a generalized game called Colored Arc Kayles, which includes these games. Colored Arc Kayles is played on a graph whose edges are colored in black, white, or gray, and black (resp., white) edges can be selected only by the black (resp., white) player, although gray edges can be selected by both black and white players. We first observe that the winner determination for Colored Arc Kayles can be done in $O^*(2^n)$ time by a simple algorithm, where $n$ is the order of a graph. We then focus on the vertex cover number, which is linearly related to the number of turns, and show that Colored Arc Kayles, BW-Arc Kayles, and Arc Kayles are solved in time $O^*(1.4143^{\tau^2+3.17\tau})$, $O^*(1.3161^{\tau^2+4{\tau}})$, and $O^*(1.1893^{\tau^2+6.34{\tau}})$, respectively, where $\tau$ is the vertex cover number. Furthermore, we present an $O^*((n/\nu+1)^{\nu})$-time algorithm for Arc Kayles, where $\nu$ is neighborhood diversity. We finally show that Arc Kayles on trees can be solved in $O^* (2^{n/2})(=O(1.4143^n))$ time, which improves $O^*(3^{n/3})(=O(1.4423^n))$ by a direct adjustment of the analysis of Bodlaender et al.'s $O^*(3^{n/3})$-time algorithm for Node Kayles.
翻译:Cram、 Domineering 和 Arc Kayles 是受到很好研究的组合式游戏 。 它们被解读为在图表中选择边缘型的游戏, 在游戏中选择的边缘值为匹配。 在本文中, 我们定义了一个名为 Cored Arc Kayles 的通用游戏, 其中包括这些游戏 。 彩色的Arc Kayles 是在一个以黑、 白或灰色颜色和黑色( 重写、 白) 边数只能由黑( 重写、 白) 玩家选择 。 尽管灰色边缘可以由黑玩家和白玩家选择 。 我们首先看到, 彩色的Arc Kayles 的胜者确定可以用$@ ( 2 ⁇ ) 来完成, 彩色的游戏是 $ ( 0. 0. 0. 20) O= 美元 = 美元 。 然后我们聚焦于旋转的数, 彩色的弧 Kayles 、 BW- Arc Kayles 和 Arc Kayles 在时间 $ $ $___ $_ $_ $_ $_ $_ $_ $_ $_ 美元 $_ 4, 这里, 美元 4, 这里, 美元 美元 4, 我们的 4, 4, 这里可以解算 。