Using AI approaches to automatically design mechanisms has been a central research mission at the interface of AI and economics [Conitzer and Sandholm, 2002]. Previous approaches that attempt to design revenue optimal auctions for the multi-dimensional settings fall short in at least one of the three aspects: 1) representation -- search in a space that probably does not even contain the optimal mechanism; 2) exactness -- finding a mechanism that is either not truthful or far from optimal; 3) domain dependence -- need a different design for different environment settings. To resolve the three difficulties, in this paper, we put forward -- MenuNet -- a unified neural network based framework that automatically learns to design revenue optimal mechanisms. Our framework consists of a mechanism network that takes an input distribution for training and outputs a mechanism, as well as a buyer network that takes a mechanism as input and output an action. Such a separation in design mitigates the difficulty to impose incentive compatibility constraints on the mechanism, by making it a rational choice of the buyer. As a result, our framework easily overcomes the previously mentioned difficulty in incorporating IC constraints and always returns exactly incentive compatible mechanisms. We then apply our framework to a number of multi-item revenue optimal design settings, for a few of which the theoretically optimal mechanisms are unknown. We then go on to theoretically prove that the mechanisms found by our framework are indeed optimal. To the best of our knowledge, we are the first to apply neural networks to discover optimal auction mechanisms with provable optimality.
翻译:使用AI方法自动设计机制自动设计机制一直是AI与经济学[Conitzer and Sandholm, 2002] 界面的一个中心研究任务。以前试图设计多维环境收入最佳拍卖的方法至少在三个方面之一有缺陷:1) 代表 -- -- 在可能甚至没有最佳机制的空间搜索;2) 精确 -- -- 寻找一种机制,要么不真实,要么远非最佳;3) 域依赖 -- -- 需要不同环境环境环境环境环境的不同设计。为了解决三个困难,我们在本文件中提出了 -- -- MenuNet -- -- 一个基于神经网络的统一框架,自动学会设计最佳收入机制。我们的框架包括一个机制网络,为培训和产出提供投入分配;一个机制,以及一个买方网络,以一个机制作为投入和产出行动;2) 准确性 -- 寻找一个机制,要么不真实或远非最佳;3) 域依赖性 -- -- 找到一个机制,作为买方的合理选择。因此,我们的最佳框架很容易克服先前提到的在纳入IC制约方面的困难,并且总是返回一些精确的激励兼容机制。然后,我们将我们的框架应用于一个机制,一个机制,一个机制,一个机制是一个机制,一个机制是一个机制,一个机制是一个机制,一个机制是一个机制是一个机制是一个机制,一个机制是一个机制,一个机制是一个最佳的最好的机制,一个最佳的 最佳的理论设计框架,一个最佳机制,一个最佳的理论设计框架是最佳机制是最佳的。我们的最佳机制,一个最佳机制,一个最佳的理论设计框架是最佳机制, 最佳机制,最佳机制,最佳机制。我们的最佳机制,最佳机制是最佳机制是最佳选择。