Consider a Bayesian binary decision-making problem in star networks, where local agents make selfish decisions independently, and a fusion agent makes a final decision based on aggregated decisions and its own private signal. In particular, we assume all agents have private beliefs for the true prior probability, based on which they perform Bayesian decision making. We focus on the Bayes risk of the fusion agent and counterintuitively find that incorrect beliefs could achieve a smaller risk than that when agents know the true prior. It is of independent interest for sociotechnical system design that the optimal beliefs of local agents resemble human probability reweighting models from cumulative prospect theory. We also consider asymptotic characterization of the optimal beliefs and fusion agent's risk in the number of local agents. We find that the optimal risk of the fusion agent converges to zero exponentially fast as the number of local agents grows. Furthermore, having an identical constant belief is asymptotically optimal in the sense of the risk exponent. For additive Gaussian noise, the optimal belief turns out to be a simple function of only error costs and the risk exponent can be explicitly characterized.


翻译:考虑恒星网络中的贝叶斯二进制决策问题, 当地代理人独立做出自私的决定, 融合剂根据综合决定和自己的私人信号做出最终决定。 特别是, 我们假设所有代理人都对真正的先前概率有私人信仰, 并以此为基础进行巴伊西亚决策。 我们关注聚变剂的贝耶斯风险, 并直觉地发现, 不正确的信念可能带来的风险比代理人知道真实之前的风险要小。 对于社会技术系统设计而言, 当地代理人的最佳信念类似于累积前景理论中的人类概率再加权模型。 我们还考虑对当地代理人中最佳信念和融合剂风险的简单定性。 我们发现, 聚变剂的最佳风险随着当地代理人数量的增加,会达到零倍速一致。 此外, 同样的一贯信念在风险推论的意义上是同样最理想的。 对于添加剂的噪音, 最理想的信念会变成一个简单的功能, 仅仅是错误成本和风险推算。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2020年6月16日
The StarCraft Multi-Agent Challenge
Arxiv
3+阅读 · 2019年2月11日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员