In this work we show how large language models (LLMs) can learn statistical dependencies between otherwise unconditionally independent variables due to dataset selection bias. To demonstrate the effect, we developed a masked gender task that can be applied to BERT-family models to reveal spurious correlations between predicted gender pronouns and a variety of seemingly gender-neutral variables like date and location, on pre-trained (unmodified) BERT and RoBERTa large models. Finally, we provide an online demo, inviting readers to experiment further.
翻译:在这项工作中,我们展示了大型语言模型(LLMs)如何能够学习由于数据集选择偏差而在其他方面无条件独立的变量之间的统计依赖性。为了证明这一效果,我们制定了一个掩盖的性别任务,可以适用于BERT-家庭模型,以揭示预测的性别名词与各种似乎不分性别的变量(如日期和地点)之间在预先培训(未经修改的)BERTE和ROBERTA大模型上的虚假关联。最后,我们提供了在线演示,邀请读者进一步实验。