In this paper, we analyze the number of neurons and training parameters that a neural networks needs to approximate multivariate functions of bounded second mixed derivatives -- Korobov functions. We prove upper bounds on these quantities for shallow and deep neural networks, breaking the curse of dimensionality. Our bounds hold for general activation functions, including ReLU. We further prove that these bounds nearly match the minimal number of parameters any continuous function approximator needs to approximate Korobov functions, showing that neural networks are near-optimal function approximators.


翻译:在本文中,我们分析神经网络需要多少神经元和培训参数来近似封闭的第二种混合衍生物 -- -- Korobov 函数的多变功能。我们证明浅层和深层神经网络的这些数量具有上限,打破了维度的诅咒。我们的界限是一般激活功能,包括RELU。我们进一步证明这些界限几乎符合任何连续功能近似 Korobov 函数的最小参数数量,表明神经网络是接近最优化的功能近似功能。

0
下载
关闭预览

相关内容

维度灾难是指在高维空间中分析和组织数据时出现的各种现象,这些现象在低维设置(例如日常体验的三维物理空间)中不会发生。
专知会员服务
50+阅读 · 2020年12月14日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员