Low-rank matrices are pervasive throughout statistics, machine learning, signal processing, optimization, and applied mathematics. In this paper, we propose a novel and user-friendly Euclidean representation framework for low-rank matrices. Correspondingly, we establish a collection of technical and theoretical tools for analyzing the intrinsic perturbation of low-rank matrices in which the underlying referential matrix and the perturbed matrix both live on the same low-rank matrix manifold. Our analyses show that, locally around the referential matrix, the sine-theta distance between subspaces is equivalent to the Euclidean distance between two appropriately selected orthonormal basis, circumventing the orthogonal Procrustes analysis. We also establish the regularity of the proposed Euclidean representation function, which has a profound statistical impact and a meaningful geometric interpretation. These technical devices are applicable to a broad range of statistical problems. Specific applications considered in detail include Bayesian sparse spiked covariance model with non-intrinsic loss, efficient estimation in stochastic block models where the block probability matrix may be degenerate, and least-squares estimation in biclustering problems. Both the intrinsic perturbation analysis of low-rank matrices and the regularity theorem may be of independent interest.


翻译:低位矩阵遍及所有统计、机器学习、信号处理、优化和应用数学。在本文中,我们提议为低位矩阵建立一个新颖和方便用户的欧几里德代表框架。相应地,我们建立一套技术和理论工具,用于分析低位矩阵的内在扰动,其中基础的优惠矩阵和环形矩阵都生活在相同的低位矩阵中。我们的分析显示,在优惠矩阵周围,亚空间之间的正中距离相当于欧洲里德(Euclide)距离,即两个适当选定的正态基点之间,绕过正方位剖面分析。我们还建立了拟议的欧几里德模式的常规功能,具有深刻的统计影响和有意义的几何解释。这些技术装置适用于一系列广泛的低位矩阵问题。我们详细考虑的具体应用包括:Bayesian 稀薄的峰值共差变差模型,具有非惯性损失,高效估算区块模型,其中块性概率矩阵可能退化,而内部基质分析可能最不透明。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
4+阅读 · 2019年1月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员