An unsupervised data-driven nuclei segmentation method for histology images, called CBM, is proposed in this work. CBM consists of three modules applied in a block-wise manner: 1) data-driven color transform for energy compaction and dimension reduction, 2) data-driven binarization, and 3) incorporation of geometric priors with morphological processing. CBM comes from the first letter of the three modules - "Color transform", "Binarization" and "Morphological processing". Experiments on the MoNuSeg dataset validate the effectiveness of the proposed CBM method. CBM outperforms all other unsupervised methods and offers a competitive standing among supervised models based on the Aggregated Jaccard Index (AJI) metric.
翻译:在这项工作中,提议了一种不受监督的由数据驱动的生理图象核心分离方法,称为CBM。CBM由三个模块组成,以块状方式应用:1) 数据驱动的颜色变异,用于节能和减少尺寸;2) 数据驱动的二进制和3) 将几何前缀与形态处理相结合。CBM来自三个模块的第一个字母——“粉色变换”、“聚合”和“分子处理”。在MoNuSeg数据集上进行的实验验证了拟议的CBM方法的有效性。CBM优于所有其他未受监督的方法,并提供了基于“综合积卡指数”指标的监督模型之间的竞争地位。