This paper applies a discontinuous Galerkin finite element method to the Kelvin-Voigt viscoelastic fluid motion equations when the forcing function is in $L^\infty({\bf L}^2)$-space. Optimal a priori error estimates in $L^\infty({\bf L}^2)$-norm for the velocity and in $L^\infty(L^2)$-norm for the pressure approximations for the semi-discrete discontinuous Galerkin method are derived here. The main ingredients for establishing the error estimates are the standard elliptic duality argument and a modified version of the Sobolev-Stokes operator defined on appropriate broken Sobolev spaces. Further, under the smallness assumption on the data, it has been proved that these estimates are valid uniformly in time. Then, a first-order accurate backward Euler method is employed to discretize the semi-discrete discontinuous Galerkin Kelvin-Voigt formulation completely. The fully discrete optimal error estimates for the velocity and pressure are established. Finally, using the numerical experiments, theoretical results are verified. It is worth highlighting here that the error results in this article for the discontinuous Galerkin method applied to the Kelvin-Voigt model using finite element analysis are the first attempt in this direction.
翻译:本文对 Kelvin- Voigt 粘结流体运动方程式应用不连续的 Galerkin 限制元素方法, 当强制函数以 $L ⁇ infty (#bf L ⁇ 2) / space 计算时, 使用 $L ⁇ infty (#bf L ⁇ 2) $- norm 。 最佳的先验误差估计值为 $L ⁇ infty (#bf L ⁇ 2) 和 $L ⁇ infty (L ⁇ 2) / $- norm 用于 半分辨不连续的 Galerkin 方法的压力近似值 。 确定误差估计的主要元素是标准椭略双性参数和 Sboolev- Stokes 操作器在相关破碎的 Sobolev 空间定义的修改版本。 此外, 在数据的小误差假设下, 已证明这些预估值在时间里是一致的。 然后, 使用 一级 精确的后向 Eulter 方法 来将半分解 Galkinnerkint 的 Galkint 配制成。 。 。