This technical report describes the EgoTask Translation approach that explores relations among a set of egocentric video tasks in the Ego4D challenge. To improve the primary task of interest, we propose to leverage existing models developed for other related tasks and design a task translator that learns to ''translate'' auxiliary task features to the primary task. With no modification to the baseline architectures, our proposed approach achieves competitive performance on two Ego4D challenges, ranking the 1st in the talking to me challenge and the 3rd in the PNR keyframe localization challenge.
翻译:本技术报告描述了“EgoTask”翻译方法,它探索了“Ego4D”挑战中一组以自我为中心的视频任务之间的关系。为了改进主要关注任务,我们提议利用现有模式为其他相关任务开发,并设计一个任务翻译器,学习将“翻译”辅助任务特性与主要任务相适应。我们提出的方法不修改基线结构,在“Ego4D”挑战中取得了竞争性业绩,在与我交谈时排第1位,在“PNR”关键框架本地化挑战中排第3位。