Motivated by program analysis, security, and verification applications, we study various fragments of a rich first-order quantifier-free (QF) theory $T_{LRE,n,c}$ over regular expression (regex) membership predicate, linear integer arithmetic over string length, string-number conversion predicate, and string concatenation. Our contributions are the following. On the theoretical side, we prove a series of (un)decidability and complexity theorems for various fragments of $T_{LRE,n,c}$, some of which have been open for several years. On the practical side, we present a novel length-aware decision procedure for the QF first-order theory $T_{LRE}$ with regex membership predicate and linear arithmetic over string length. The crucial insight that enables our algorithm to scale for instances obtained from practical applications is that these instances contain a wealth of information about upper and lower bounds on lengths of strings which can be used to simplify operations on automata representing regexes. We showcase the power of our algorithm via an extensive empirical evaluation over a large and diverse benchmark of over 57000 regex-heavy instances, derived from a mix of industrial applications, instances contributed by other solver developers, as well as randomly-generated ones. Specifically, our solver outperforms five other state-of-the-art string solvers, namely, CVC4, Z3str3, Z3-Trau, OSTRICH and Z3seq, over this benchmark.


翻译:在程序分析、安全和核查应用的动力下,我们研究了一个丰富的第一阶无量化标准(QF)理论($T ⁇ LRE,n,c})在正常表达式(regex)的前提上、字符串长度的线性整数计算、字符串编号转换上游和字符串调等各种应用方面的各种碎片。我们的贡献如下。在理论方面,我们证明一系列(不)衰减和复杂性的关于美元($T ⁇ LRE,n,c}美元)各种碎片,其中一些已经开放了几年。在实际方面,我们为QF第一阶理论($T ⁇ LRE,n,c})提出了一个新颖的长觉悟决定程序($$T ⁇ LRE,c}($Right)在正常表达式表达式表达式表达式表达式表达($T>3),在字符串成员时间长度上,线数线性计算(线性算法)和线性计算。让我们能够根据实际应用来衡量实例的算法,这些事例包含大量关于内下线段长度的信息,可以用来简化代表 regexexex的操作的动作的操作。我们通过对Atomatmat-rocreal-destreal strual strual 3, stral stral stral stral 3 ex ex ex ex ex ex ex a ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex, ex ex ex ex ex ex exbal exbal ex ex ex ex ex exbal ex ex exbal exbactalviewalalalalalalal ex ex ex ex aviewalal ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex

0
下载
关闭预览

相关内容

正则表达式(Regular Expression,一般简写为RegEx或者RegExp),也译为正规表示法、常规表示法,台湾译「规则运算式」,在计算机科学中,是指一个用来描述或者匹配一系列符合某个句法规则的字符串的单个字符串。
IBM《人工智能白皮书》(2019版),12页PDF,IBM编
专知会员服务
20+阅读 · 2019年11月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
已删除
将门创投
4+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2020年12月3日
Arxiv
0+阅读 · 2020年11月30日
Arxiv
0+阅读 · 2020年11月27日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
已删除
将门创投
4+阅读 · 2017年11月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2020年12月3日
Arxiv
0+阅读 · 2020年11月30日
Arxiv
0+阅读 · 2020年11月27日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
Top
微信扫码咨询专知VIP会员