In this paper, a novel multiagent based state transition optimization algorithm with linear convergence rate named MASTA is constructed. It first generates an initial population randomly and uniformly. Then, it applies the basic state transition algorithm (STA) to the population and generates a new population. After that, It computes the fitness values of all individuals and finds the best individuals in the new population. Moreover, it performs an effective communication operation and updates the population. With the above iterative process, the best optimal solution is found out. Experimental results based on some common benchmark functions and comparison with some stat-of-the-art optimization algorithms, the proposed MASTA algorithm has shown very superior and comparable performance.
翻译:在本文中,建立了一个新型的多试剂国家过渡优化算法,其线性趋同率称为MASTA。它首先随机和统一地生成初始人口。然后,它将基本的国家过渡算法(STA)应用于人口,并产生新的人口。之后,它计算了所有个人的健康价值,发现新人口中最优秀的个人。此外,它执行有效的通信操作,并更新人口信息。有了上述迭接程序,可以找到最佳的解决方案。根据一些共同的基准功能和与一些最新技术优化算法的比较得出的实验结果,拟议的MASTA算法显示了非常优异和可比的性能。