Despite rapid progress in theoretical reinforcement learning (RL) over the last few years, most of the known guarantees are worst-case in nature, failing to take advantage of structure that may be known a priori about a given RL problem at hand. In this paper we address the question of whether worst-case lower bounds for regret in online learning of Markov decision processes (MDPs) can be circumvented when information about the MDP, in the form of predictions about its optimal $Q$-value function, is given to the algorithm. We show that when the predictions about the optimal $Q$-value function satisfy a reasonably weak condition we call distillation, then we can improve regret bounds by replacing the set of state-action pairs with the set of state-action pairs on which the predictions are grossly inaccurate. This improvement holds for both uniform regret bounds and gap-based ones. Further, we are able to achieve this property with an algorithm that achieves sublinear regret when given arbitrary predictions (i.e., even those which are not a distillation). Our work extends a recent line of work on algorithms with predictions, which has typically focused on simple online problems such as caching and scheduling, to the more complex and general problem of reinforcement learning.


翻译:尽管过去几年在理论强化学习(RL)方面取得了快速进展,但大多数已知的保障在过去几年里是最为糟糕的,没有利用可能预先知道的关于当前特定RL问题的结构。在本文中,我们讨论了在网上学习Markov决策程序(MDPs)时最差的、最差的、最遗憾的界限的问题,如果以预测最佳美元价值功能的形式向算法提供有关MDP的信息,那么,这种信息就能够回避。我们表明,当对最佳Q$价值功能的预测满足一个相当弱的条件时,我们称之为蒸馏,然后我们就可以用一套预测极不准确的州-行动对子取代一套状态-行动对子,从而改进遗憾界限。这种改进既有利于统一的遗憾界限,又有利于基于差距的信息。此外,我们可以用一种算法实现这一属性,在作出武断的预测时(即甚至不是蒸馏的)达到一个相当弱的条件。我们的工作将最近关于国家-行动对立对子的预测扩展了一条工作线,即通过一种简单、比较复杂的算法的进度问题,其典型地是,在网上学习比较复杂的、比较复杂的进度上的问题。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年12月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年12月16日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
11+阅读 · 2020年12月2日
A Modern Introduction to Online Learning
Arxiv
21+阅读 · 2019年12月31日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员