The Lov\'{a}sz Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can be used to establish the existence of objects that satisfy certain properties. The breakthrough paper of Moser and Tardos and follow-up works revealed that the LLL has intimate connections with a class of stochastic local search algorithms for finding such desirable objects. In particular, it can be seen as a sufficient condition for this type of algorithms to converge fast. Besides conditions for existence of and fast convergence to desirable objects, one may naturally ask further questions regarding properties of these algorithms. For instance, "are they parallelizable?", "how many solutions can they output?", "what is the expected "weight" of a solution?", etc. These questions and more have been answered for a class of LLL-inspired algorithms called commutative. In this paper we introduce a new, very natural and more general notion of commutativity (essentially matrix commutativity) which allows us to show a number of new refined properties of LLL-inspired local search algorithms with significantly simpler proofs.
翻译:Lov\' {a}z Local Lemma (LLLL) 是一个强大的概率组合工具,可用于确定满足某些特性的物体的存在。 Moser 和 Tardos 的突破性论文和后续作品显示, LLLL 与一类寻找这些理想对象的随机本地搜索算法有着密切的联系。 特别是, 它可以被视为这种算法快速趋同的充足条件。 除了存在和快速接近理想对象的条件外, 人们自然会询问关于这些算法特性的更多问题。 例如, “ 它们可以平行吗? ” 、 “ 有多少解决方案可以输出? ” 、 “ 解决方案的预期“ 重量 ” 是什么? ” 等。 这些问题和更多的问题已经被一个叫作交流的LLL- 启发性算法的类别所解答。 在这份文件中,我们引入一个新的、 非常自然的和更为一般的通俗的通识概念( 基本是矩阵互通性), 使我们能够展示一系列新的精细的LLLL- iming 本地搜索算法的精细的特性,, 和非常简单的证明。