We propose an information-theoretic technique for analyzing privacy guarantees of online algorithms. Specifically, we demonstrate that differential privacy guarantees of iterative algorithms can be determined by a direct application of contraction coefficients derived from strong data processing inequalities for $f$-divergences. Our technique relies on generalizing the Dobrushin's contraction coefficient for total variation distance to an $f$-divergence known as $E_\gamma$-divergence. $E_\gamma$-divergence, in turn, is equivalent to approximate differential privacy. As an example, we apply our technique to derive the differential privacy parameters of gradient descent. Moreover, we also show that this framework can be tailored to batch learning algorithms that can be implemented with one pass over the training dataset.


翻译:我们建议了一种信息理论技术来分析在线算法的隐私保障。 具体地说,我们证明对迭代算法的差别隐私保障可以通过直接应用从极强的数据处理不平等中得出的收缩系数来确定。 我们的技术依赖于对多布鲁辛的收缩系数进行概括,以至所谓的“Eçgamma$-diverence”的总变异距离为“$Egamma$-diverence ” 。 $Egamma$-diverence 反过来相当于大致的差别隐私。 例如,我们运用了我们的技术来得出梯度下降的差别隐私参数。 此外,我们还表明,这一框架可以适用于分批学习算法,可以通过超过培训数据集的一通路执行。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月23日
Arxiv
0+阅读 · 2021年2月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员